Mimicking the electron transfer chain in photosystem II with a molecular triad thermodynamically capable of water oxidation.
نویسندگان
چکیده
In the photosynthetic photosystem II, electrons are transferred from the manganese-containing oxygen evolving complex (OEC) to the oxidized primary electron-donor chlorophyll P680(•+) by a proton-coupled electron transfer process involving a tyrosine-histidine pair. Proton transfer from the tyrosine phenolic group to a histidine nitrogen positions the redox potential of the tyrosine between those of P680(•+) and the OEC. We report the synthesis and time-resolved spectroscopic study of a molecular triad that models this electron transfer. The triad consists of a high-potential porphyrin bearing two pentafluorophenyl groups (PF(10)), a tetracyanoporphyrin electron acceptor (TCNP), and a benzimidazole-phenol secondary electron-donor (Bi-PhOH). Excitation of PF(10) in benzonitrile is followed by singlet energy transfer to TCNP (τ = 41 ps), whose excited state decays by photoinduced electron transfer (τ = 830 ps) to yield Bi-PhOH-PF(10)(•+)-TCNP(•-). A second electron transfer reaction follows (τ < 12 ps), giving a final state postulated as BiH(+)-PhO(•)-PF(10)-TCNP(•-), in which the phenolic proton now resides on benzimidazole. This final state decays with a time constant of 3.8 μs. The triad thus functionally mimics the electron transfers involving the tyrosine-histidine pair in PSII. The final charge-separated state is thermodynamically capable of water oxidation, and its long lifetime suggests the possibility of coupling systems such as this system to water oxidation catalysts for use in artificial photosynthetic fuel production.
منابع مشابه
Direct electron transfer from photosystem II to hematite in a hybrid photoelectrochemical cell.
A hybrid photoanode integrating the cyanobacterial photosystem II (PSII) with a hematite film for water oxidation is constructed. Direct electron transfer from PSII to the excited Ti/Fe2O3 electrode occurs under light irradiation, resulting in a significant improvement of the photocurrent.
متن کاملCoupled electron transfers in artificial photosynthesis.
Light-induced charge separation in molecular assemblies has been widely investigated in the context of artificial photosynthesis. Important progress has been made in the fundamental understanding of electron and energy transfer and in stabilizing charge separation by multi-step electron transfer. In the Swedish Consortium for Artificial Photosynthesis, we build on principles from the natural en...
متن کاملA proposal for water oxidation in photosystem II
There has been much speculation concerning the mechanism for water oxidation by Photosystem 11. Based on recent work on the biophysics of Photosystem I1 and our own work on the reactivity of synthetic manganese complexes, we propose a chemically reasonable mechanistic model for the water oxidation function of this enzyme. An essential feature of the model is the nucleophilic attack by calcium-l...
متن کاملCyclic electron transfer in photosystem II in the marine diatom Phaeodactylum tricornutum.
In Phaeodactylum tricornutum Photosystem II is unusually resistant to damage by exposure to high light intensities. Not only is the capacity to dissipate excess excitations in the antenna much larger and induced more rapidly than in other organisms, but in addition an electron transfer cycle in the reaction center appears to prevent oxidative damage when secondary electron transport cannot keep...
متن کاملFunction of tyrosine Z in water oxidation by photosystem II: electrostatical promotor instead of hydrogen abstractor.
Photosynthetic water oxidation by photosystem II is mediated by a Mn4 cluster, a cofactor X still chemically ill-defined, and a tyrosine, YZ (D1-Tyr161). Before the final reaction with water proceeds to yield O2 (transition S4-->S0), two oxidizing equivalents are stored on Mn4 (S0-->S1-->S2), a third on X (S2-->S3), and a forth on YZ(S3-->S4). It has been proposed that YZ functions as a pure el...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 109 39 شماره
صفحات -
تاریخ انتشار 2012